1,231 research outputs found

    Static and Dry Friction due to Multiscale Surface Roughness

    Full text link
    It is shown on the basis of scaling arguments that a disordered interface between two elastic solids will quite generally exhibit static and "dry friction" (i.e., kinetic friction which does not vanish as the sliding velocity approaches zero), because of Tomlinson model instabilities that occur for small length scale asperities. This provides a possible explanation for why static and "dry" friction are virtually always observed, and superlubricity almost never occurs

    Reaction ⁶Li(p, Δâșâș)⁶He At 1.04 GeV And The Δ−N Interaction

    Get PDF
    The reaction ⁶Li(p, Δâșâș)⁶He has been studied at 1.04 GeV for transferred momenta ranging from 0.11 to 0.35 (GeV/c)2. An exponential decrease of the cross section is observed. A Glauber-type calculation is presented. The possibility of extracting information on σ(ΔN) and α(ΔN) is discussed

    Test results for the V0 detector in ALICE

    Get PDF
    In this report, we describe the V0 detector, a device made of two arrays of scintillating counters (V0L and V0R) installe d on both sides of the ALICE in teraction vertex. The light yield and the time resolution were measured for several prototype counter s which were tested on the PS T10 beam line and with cosmic rays. Results from the test and from simulations are reported

    Results from the test bench of the Geometry Monitoring System of the ALICE Muon Spectrometer

    No full text
    We present the results obtained with the test bench of the Geometry Monitoring System (GMS) for the ALICE Muon Spectrometer. It consists in a mock up, reproducing at full scale, three half planes of the chambers 6, 7 and 8 of the spectrometer. We show that the GMS is able to measure transverse displacements with an accuracy of 1.5 microm. We show also that the resolution deteriorates by a factor 3 to 4 when thermal gradients are generated

    Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA

    Get PDF
    The Lactococcus lactis ccpA gene, encoding the global regulatory protein CcpA, was identified and characterized. Northern blot and primer extension analyses showed that the L. lactis ccpA gene is constitutively transcribed from a promoter that does not contain a cre sequence. Inactivation of the ccpA gene resulted in a twofold reduction in the growth rate compared with the wild type on glucose, sucrose and fructose, while growth on galactose was almost completely abolished. The observed growth defects could be complemented by the expression of either the L. lactis or the Bacillus subtilis ccpA gene. The disruption of the ccpA gene reduced the catabolite repression of the gal operon, which contains a cre site at the transcription start site and encodes enzymes involved in galactose catabolism. In contrast, CcpA activates the transcription of the cre-containing promoter of the las operon, encoding the glycolytic enzymes phosphofructokinase, pyruvate kinase and L-lactate dehydrogenase, because its transcription level was fourfold reduced in the ccpA mutant strain compared with the wild-type strain. The lower activities of pyruvate kinase and L-lactate dehydrogenase in the ccpA mutant strain resulted in the production of metabolites characteristic of a mixed-acid fermentation, whereas the fermentation pattern of the wild-type strain was essentially homolactic

    Centrality dependence of particle production in p−Pb collisions at sNN−−−√=5.02TeV

    Get PDF
    We report measurements of the primary charged-particle pseudorapidity density and transverse momentum distributions in p−Pb collisions at sNN−−−√=5.02TeV and investigate their correlation with experimental observables sensitive to the centrality of the collision. Centrality classes are defined by using different event-activity estimators, i.e., charged-particle multiplicities measured in three different pseudorapidity regions as well as the energy measured at beam rapidity (zero degree). The procedures to determine the centrality, quantified by the number of participants (Npart) or the number of nucleon-nucleon binary collisions (Ncoll) are described. We show that, in contrast to Pb-Pb collisions, in p−Pb collisions large multiplicity fluctuations together with the small range of participants available generate a dynamical bias in centrality classes based on particle multiplicity. We propose to use the zero-degree energy, which we expect not to introduce a dynamical bias, as an alternative event-centrality estimator. Based on zero-degree energy-centrality classes, the Npart dependence of particle production is studied. Under the assumption that the multiplicity measured in the Pb-going rapidity region scales with the number of Pb participants, an approximate independence of the multiplicity per participating nucleon measured at mid-rapidity of the number of participating nucleons is observed. Furthermore, at high-pT the p−Pb spectra are found to be consistent with the pp spectra scaled by Ncoll for all centrality classes. Our results represent valuable input for the study of the event-activity dependence of hard probes in p−Pb collisions and, hence, help to establish baselines for the interpretation of the Pb-Pb data
    • 

    corecore